If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 890000 = 0.638x2 + 6.671x + 627.619 Reorder the terms: 890000 = 627.619 + 6.671x + 0.638x2 Solving 890000 = 627.619 + 6.671x + 0.638x2 Solving for variable 'x'. Combine like terms: 890000 + -627.619 = 889372.381 889372.381 + -6.671x + -0.638x2 = 627.619 + 6.671x + 0.638x2 + -627.619 + -6.671x + -0.638x2 Reorder the terms: 889372.381 + -6.671x + -0.638x2 = 627.619 + -627.619 + 6.671x + -6.671x + 0.638x2 + -0.638x2 Combine like terms: 627.619 + -627.619 = 0.000 889372.381 + -6.671x + -0.638x2 = 0.000 + 6.671x + -6.671x + 0.638x2 + -0.638x2 889372.381 + -6.671x + -0.638x2 = 6.671x + -6.671x + 0.638x2 + -0.638x2 Combine like terms: 6.671x + -6.671x = 0.000 889372.381 + -6.671x + -0.638x2 = 0.000 + 0.638x2 + -0.638x2 889372.381 + -6.671x + -0.638x2 = 0.638x2 + -0.638x2 Combine like terms: 0.638x2 + -0.638x2 = 0.000 889372.381 + -6.671x + -0.638x2 = 0.000 Begin completing the square. Divide all terms by -0.638 the coefficient of the squared term: Divide each side by '-0.638'. -1394000.597 + 10.45611285x + x2 = 0 Move the constant term to the right: Add '1394000.597' to each side of the equation. -1394000.597 + 10.45611285x + 1394000.597 + x2 = 0 + 1394000.597 Reorder the terms: -1394000.597 + 1394000.597 + 10.45611285x + x2 = 0 + 1394000.597 Combine like terms: -1394000.597 + 1394000.597 = 0.000 0.000 + 10.45611285x + x2 = 0 + 1394000.597 10.45611285x + x2 = 0 + 1394000.597 Combine like terms: 0 + 1394000.597 = 1394000.597 10.45611285x + x2 = 1394000.597 The x term is 10.45611285x. Take half its coefficient (5.228056425). Square it (27.33257398) and add it to both sides. Add '27.33257398' to each side of the equation. 10.45611285x + 27.33257398 + x2 = 1394000.597 + 27.33257398 Reorder the terms: 27.33257398 + 10.45611285x + x2 = 1394000.597 + 27.33257398 Combine like terms: 1394000.597 + 27.33257398 = 1394027.92957398 27.33257398 + 10.45611285x + x2 = 1394027.92957398 Factor a perfect square on the left side: (x + 5.228056425)(x + 5.228056425) = 1394027.92957398 Calculate the square root of the right side: 1180.689599164 Break this problem into two subproblems by setting (x + 5.228056425) equal to 1180.689599164 and -1180.689599164.Subproblem 1
x + 5.228056425 = 1180.689599164 Simplifying x + 5.228056425 = 1180.689599164 Reorder the terms: 5.228056425 + x = 1180.689599164 Solving 5.228056425 + x = 1180.689599164 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.228056425' to each side of the equation. 5.228056425 + -5.228056425 + x = 1180.689599164 + -5.228056425 Combine like terms: 5.228056425 + -5.228056425 = 0.000000000 0.000000000 + x = 1180.689599164 + -5.228056425 x = 1180.689599164 + -5.228056425 Combine like terms: 1180.689599164 + -5.228056425 = 1175.461542739 x = 1175.461542739 Simplifying x = 1175.461542739Subproblem 2
x + 5.228056425 = -1180.689599164 Simplifying x + 5.228056425 = -1180.689599164 Reorder the terms: 5.228056425 + x = -1180.689599164 Solving 5.228056425 + x = -1180.689599164 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.228056425' to each side of the equation. 5.228056425 + -5.228056425 + x = -1180.689599164 + -5.228056425 Combine like terms: 5.228056425 + -5.228056425 = 0.000000000 0.000000000 + x = -1180.689599164 + -5.228056425 x = -1180.689599164 + -5.228056425 Combine like terms: -1180.689599164 + -5.228056425 = -1185.917655589 x = -1185.917655589 Simplifying x = -1185.917655589Solution
The solution to the problem is based on the solutions from the subproblems. x = {1175.461542739, -1185.917655589}
| 3m(m-10)=90 | | log(4)3=9y | | 6(y-20)= | | br-cr+bz-cz= | | 8x+7-4x=-5x-16+x | | 4-8b^2=-796 | | -1=1/4=s | | 24=3s-4(29-s) | | -3(3y-7)-y=-4(y-2) | | 2k^2-10=46 | | Y^2-3*y-10=0 | | -3(3y-7)-y=5(5x+5) | | 17x+2y=5fory | | -3(y-4)=-9y+24 | | 17x+2y=5 | | -12-v=-2v-v | | (x^2-16)(y^2-4)=0 | | (x^2+16)(y^2-4)=0 | | K-1=2k-5 | | y=-2+-1y+2 | | 5a+2b=19 | | -4.9x^2+4.6x+2.1=0 | | 85=3x+(10+x) | | (a-t)/(b-t)=c | | -13+n+5+8=5n+4n | | y=.75(1) | | 0=16t^2+100t+100 | | -14x+3(x-5)+7x=6x-35 | | 3x-4(.75)=0 | | 7-2z=11 | | 7+5x-8x=3x+1 | | 7(t-2)=st-9 |